Blood Bank I

D. Joe Chaffin, MD Bonfils Blood Center, Denver, CO

The Fun Just <u>Never</u> Ends...

A. Blood Bank I

Blood Groups

B. Blood Bank II

- Blood Donation and Autologous Blood
- Pretransfusion Testing

C. Blood Bank III

• Component Therapy

D. Blood Bank IV

- Transfusion Complications
 - * Noninfectious (Transfusion Reactions)
 - * Infectious (Transfusion-transmitted Diseases)

E. Blood Bank V (not discussed today but available

at www.bbguy.org)

Hematopoietic Progenitor Cell Transplantation

F. Blood Bank Practical

- Management of specific clinical situations
- Calculations, Antibody ID and no-pressure sample questions

Blood Bank I Blood Groups

I. Basic Antigen-Antibody Testing

A. Basic Red Cell-Antibody Interactions

- 1. Agglutination
 - a. Clumping of red cells due to antibody coating
 - b. Main reaction we look for in Blood Banking
 - c. Two stages:
 - 1) Coating of cells ("sensitization")
 - a) Affected by antibody specificity, electrostatic RBC charge, temperature, amounts of antigen and antibody
 - b) Low Ionic Strength Saline (LISS) decreases repulsive charges between RBCs; tends to enhance cold antibodies and autoantibodies
 - c) Polyethylene glycol (PEG) excludes H₂O, tends to enhance warm antibodies and autoantibodies.
 - 2) Formation of bridges
 - a) Lattice structure formed by antibodies and RBCs
 - b) IgG isn't good at this; one antibody arm must attach to one cell and other arm to the other cell.
 - c) IgM is better because of its pentameric structure.

- 2. Hemolysis
 - a. Direct lysis of a red cell due to antibody coating
 - b. Uncommon, but equal to agglutination.
 - 1) Requires complement fixation
 - 2) IgM antibodies do this better than IgG.

B. Tube testing

1. Immediate spin phase

- a. Mix serum, 2-5% RBC suspension; spin 15-30 sec.
 1) Most common: 2 drops serum, 1 drop RBCs.
- b. Antibodies reacting here are usually IgM
- 2. **37** C phase
 - a. Add potentiator (+/-), incubate at 37 C, spin.
 - b. Potentiators and incubation times:
 - 1) 10-15 minutes for LISS
 - 2) 15-30 minutes for albumin or PEG
 - 3) 30-60 minutes for no potentiation
- 3. Indirect antiglobulin ("antihuman globulin") phase
 - a. Wash above to remove unbound globulins.
 - b. Add antihuman globulin, spin.

C. Alternatives to tube testing

1. Column agglutination technology (Gel testing)

- a. Add RBCs and plasma to top of tube, incubate, spin.
- b. Microtubes are filled with gel particles and anti-IgG
 - 1) Anti-IgG grabs onto IgG-coated RBCs and inhibits their migration through gel *immunologically*
 - 2) Gel particles separate RBC clusters *physically* (inhibit agglutinates from migrating through gel).
- c. Results:
 - 1) Negative: RBCs form button at bottom of microtube.
 - Positive: RBCs stopped in areas through the microtube (more positive = higher position in tube)
- d. Can be automated (ProVue machine)
- e. Similar sensitivity to PEG tube testing
- 2. Solid-phase Red Cell Adherence Testing
 - a. Antibody binds to lysed or intact RBC antigens that are bound by manufacturer to the sides of microwells
 - b. Add patient serum, incubate, wash: If positive, antibody binds to test RBCs.
 - c. Indicator RBCs (coated with monoclonal anti-IgG) attach to antibody on test RBCs.
 - d. Spin and interpret
 - 1) Negative: RBCs in a button at bottom of microwell, (indicator cells didn't bind to the test RBCs).
 - 2) Positive: RBCs spread in a "carpet" all along the microwell (indicator cells did bind to test RBCs).
 - e. Can be automated (Galileo, Galileo Echo, NEO)
 - f. Similar sensitivity to PEG tube testing

D. The Antiglobulin Test ("Coombs Test")

- 1. Indirect: see above; demonstrates *in-vitro* RBC coating with antibody and/or complement.
- 2. Direct: red cells from patient washed, then mixed with antihuman globulin; demonstrates *in-vivo* RBC coating with antibody and/or complement.

- 3. IAT variations
 - a. Unknown antibody check: Use RBCs with a known antigen profile, as in an antibody screen
 - b. Unknown RBC antigen check: Use serum with known antibody specificity, as in RBC antigen testing
 - c. Can be used to check for an unknown antigen *OR* unknown antibody, as in the crossmatch procedure
- 4. Specificity possibilities for the antiglobulin
 - a. Anti-IgG, -C3d ("polyspecific"); most common to start
 - 1) Detect red cells coated with either of the above
 - 2) May also detect other immunoglobulins (because the anti-IgG detects light chains, too)
 - b. Anti-IgG and anti-IgG (heavy chain-specific)
 - 1) Both detect IgG-coated red cells
 - 2) Anti-IgG used for PEG, gel, and solid phase tests
 - c. Anti-C3b, -C3d
 - 1) Detects either of the above complement components
 - 2) Most useful in evaluating IgM-related hemolysis, cold agglutinin disease
- 5. IgG-sensitized RBCs ("Coomb's control", "check cells")
 - a. Use after *negative* DAT or IAT <u>tube test</u> (not gel or solid-phase) to ensure functioning of AHG reagent
 - b. Add IgG-coated cells to AHG-cell mixture
 - c. Negative = bad AHG or no AHG added
 - d. Other errors (e.g., omitting test serum) missed.

E. Dosage

- 1. Some antibodies react more strongly with RBC antigens that have <u>homozygous</u> gene expression.
- 2. For example, imagine a hypothetical anti-Z
 - a. Patient 1 genotype: ZZ (Homozygous for Z)
 - b. Patient 2 genotype: ZY (Heterozygous for Z)

c. If anti-Z shows dosage, it will react stronger with patient 1's RBCs (see below).

RBC Genotype	Reaction with anti-Z
ZZ	3+
ZY	1+

3. Most common in Kidd, Duffy, Rh and MNS systems

F. Enzymes

- 1. Proteolytic enzymes (e.g., ficin, papain) cleave RBC surface glycoproteins and can strengthen reactions by enhancing antigen expression or allowing antibodies to bind better to previously shielded antigens
- 2. Enzymes may also directly destroy other antigens
- 3. Useful in antibody identification to confirm or refute a particular antigen as target of an antibody (see table)
- 4. The "Enzyme Classification"

Enhanced	Decreased	Unaffected
ABO-related	MNS System	Kell System
ABO, H Systems	Duffy System	Diego System
Lewis System	Lutheran System	Colton System
I System		
P System		
Rh System		
Kidd System		

G. Neutralization

- 1. Certain substances, when mixed with a red cell antibody, inhibit the activity of that antibody against test red cells.
- 2. Some of these are pretty weird! (See table below)

Neutralization of Antibodies		
ABO Saliva (secretor)		
Lewis	Saliva (secretor for Le ^b)	
P1	Hydatid cyst fluid	
	Pigeon egg whites	
Sd^{a}	Human urine	
Chido, Rodgers	Serum	

H. Lectins

- 1. Seed/plant extracts react with certain RBC antigens
- 2. Especially useful in polyagglutination (T, Tn, etc)
- 3. May be commercial or homemade

Lectin	Specificity
Dolichos biflorus	A_1
Ulex europaeus	Н
Vicia graminea	Ν
Arachis hypogea	Т
Glycine max	T, Tn
Salvia	Tn

II. Blood Groups

A. General characteristics

- 1. Definition
 - a. Blood group antigen: Protein, glycoprotein, or glycolipid on RBCs, detected by an alloantibody
 1) NOTE: Antigens are not limited to RBCs
 - b. Blood group system: Group of blood group antigens that are genetically linked (30 total systems per ISBT)
- 2. Significance
 - a. "Significant" = antibody causes HTRs or HDFN
 - b. Most significant antibodies are "warm reactive"; meaning they react best at IAT (37 C).
 - c. Most insignificant antibodies are "cold reactive"; meaning they react best below 37 C.
 - d. Warm antibodies most often IgG, colds usually IgM.
 - e. IgM antibodies are usually "naturally occurring" (no transfusion or pregnancy required for their formation).
 - f. ABO is the exception; see asterisks in table below

"WARM-REACTIVE"	"COLD-REACTIVE"	
IgG	IgM	
Require exposure	Naturally occurring	
Cause HDN	No HDN*	
Cause HTRs	No HTRs*	
"Significant"	"Insignificant"*	

B. ABO and H Systems

- 1. Basic biochemistry (see figure below)
 - a. Type 1 and 2 chains
 - 1) Type 1: Glycoproteins and glycolipids in secretions and plasma carrying free-floating antigens
 - 2) Type 2: Glyco<u>lipids</u> and glycoproteins carrying bound antigens on RBCs.
 - b. *Se* gene (FUT2; FUT = "fucosyltransferase")
 - 1) "Secretor" gene (chrom 19); Precursor to making A or B antigens in secretions
 - 2) FUT enzyme adds fucose to *type 1* chains at terminal galactose; **product is type 1 H antigen**
 - 3) 80% gene frequency
 - c. H gene (FUT1)
 - 1) Closely linked to Se on chrom 19
 - 2) FUT enzyme adds fucose to *type 2* chains at terminal galactose; **product is type 2 H antigen.**
 - 3) Virtually 100% gene frequency (Bombay = hh).
 - d. H antigen required before A and/or B can be made on RBCs (type 2 H) or in secretions (type 1 H).
 - Single sugar added to a type 1 or 2 H antigen chain makes A or B antigens and eliminates H antigen.
 a) Group A sugar: N-acetylgalactosamine

b) Group B sugar: Galactose

2) As more A or B is made, less H remains.

a) H amount:
$$O > A_2 > B > A_2B > A_1 > A_1B$$

2. ABO antigens

- a. Genotype determined by three genes on long arm of chrom 9: *A*, *B* and *O* (*O* is nonfunctional).
- b. A and B genes code for transferase enzymes, not directly for an antigen (as above)
- c. ABO antigens begin to appear on fetal RBCs at 6 weeks gestation; reach adult levels by age 4.
 - 1) Also present on platelets, endothelium, kidney, heart, lung, bowel, pancreas tissue
- 3. ABO antibodies
 - a. Antibodies clinically significant, naturally occurring
 - b. Begin to appear at 4 months of age; reach adult levels by age 10 and may fade with advanced age
 - f. Three antibodies: anti-A, anti-B and anti-A,B; differ by blood group
 - 1) Group A and B: Anti-A or –B is predominantly IgM, but each reacts strongly at body temperatures.
 - 2) Group O: Anti-A and –B are predominantly **IgG**, and react best at body temperatures
 - Group O: Anti-A,B is IgG reacting against A and/or B cells (reactivity can't be separated into individual specificities).

Туре	Whites	Blacks	Asians	Native Americans
0	45%	49%	40%	79%
Α	40%	27%	28%	16%
В	11%	20%	27%	4%
AB	4%	4%	5%	<1%

4. ABO blood groups

a. Group O

- 1) The most common blood group across racial lines
- 2) Genotype: OO
- 3) Antigen: H
 - a) Ulex europaeus lectin reacts with H antigen.

- 4) Antibodies: Anti-A, anti-B, anti-A, B (see above)
 - a) Because of strong IgG component to all above antibodies, mild HDFN is common in O moms
 - b) Why not severe? Weak fetal ABH expression, soluble ABH antigens (neutralize antibodies)
- b. Group A
 - 1) Possible genotypes: AA, AO
 - 2) Antigens: A, H
 - 3) Antibody: anti-B (primarily IgM).
 - 4) A subgroups
 - a) A_1 (80%) and A_2 (~20%) most important
 - b) Monoclonal anti-A agglutinates both types well
 - c) A₁ red cells carry about 5x more A on RBC surfaces than A₂ cells
 - d) Qualitative differences also exist in the structure of the antigenic chains (type 3 and 4 for A₂).
 - e) 1-8% of A₂ and 25% of A₂B form anti-A₁.
 - Usually clinically insignificant IgM
 - Common cause of ABO discrepancies.
 - If reactive at 37C, avoid A₁ RBC transfusion.
 - f) Dolichos biflorus lectin agglutinates A₁ but not A₂ RBCs.

c. Group B

- 1) Genotypes: BB, BO
- 2) Antigens: B, H
- 3) Antibodies: Anti-A (primarily IgM).
- 4) B subgroups: Usually unimportant and less frequent
- d. Group AB
 - 1) Least frequent ABO blood type (about 4%)
 - 2) Antigens: A and B (very little H)
 - a) Can be further subdivided into A₁B or A₂B depending on the status of the A antigen
 - 3) Antibodies: none
- 5. ABO testing

Cell		Serum		ABO
Anti-A	Anti-B	A ₁ cells	B cells	Group
4+	0	0	4+	Α
0	4+	4+	0	B
4+	4+	0	0	AB
0	0	4+	4+	0

- a. Cell grouping ("forward grouping")
 - 1) Patient red cells agglutinated by anti-A, anti-B.
- b. Serum grouping ("reverse grouping", "back typing")1) Patient serum (or plasma) against A₁ and B RBCs.
- c. Note the opposite reactions!
 - 1) If forward reactions are not opposite of reverse, an ABO discrepancy is present.

- d. Both serum and cell grouping required unless testing babies < 4 months of age or reconfirming ABO testing done on donor blood (requires cell grouping only).
- 6. ABO discrepancies
 - a. Disagreement between the interpretations of cell and serum grouping (e.g., forward = A, reverse = O); caused by antigen and/or antibody problems or technical errors.
 - b. Antigen problems
 - 1) Missing antigens
 - a) A or B subgroups
 - b) Transfusion or transplantation
 - c) Leukemia or other malignancies
 - 2) Unexpected antigens
 - a) Transfusion/transplantation out-of-group
 - b) Acquired B phenotype (more below)
 - c) Recent marrow/stem cell transplant.
 - d) Polyagglutination
 - c. Antibody problems
 - 1) Missing antibodies
 - a) Immunodeficiency
 - b) Neonates, elderly, or immunocompromised
 - c) Transplantation or transfusion
 - d) ABO subgroups
 - 2) Unexpected antibodies
 - a) Cold antibodies (auto- or allo-)
 - b) Anti-A₁
 - c) Rouleaux/plasma expanders (false positive)
 - d) Transfusion or transplantation
 - e) Reagent-related antibodies
 - d. Technical errors
 - 1) Sample/reagent prep, mix-ups, or interpretation errors
- 7. Weird stuff about ABO

a. Acquired B phenotype

- 1) A₁ RBC contact with enteric gram negatives: Colon cancer, intestinal obstruction, gram-negative sepsis
- 2) AB forward (with weak anti-B reactions), A reverse
- Bacterial enzymes deacetylate group A GalNAc; remaining galactosamine looks like B and reacts with forms of monoclonal anti-B (ES-4 clone).

Cell Typing		Serum Typing			
Anti- A	Anti- B	Interp	A ₁ cells	B cells	Interp
4+	<mark>1-2+</mark>	AB	0	4+	Α

4) Use monoclonal anti-B that does NOT recognize acquired B, acidify serum (no reaction with anti-B)

b. **B(A) phenotype**

- 1) Opposite of acquired B (group B patients with weak A activity); this condition is inherited, not acquired
- 2) Cross-reaction with a specific monoclonal anti-A; test using different anti-A shows the patient as B.

c. Bombay (O_h) phenotype

- 1) Total lack of H, A and B antigens due to lack of *H* and *Se* genes (genotype: *hh*, *sese*)
- 2) Naturally occurring strong anti-H, anti-A, anti-B
- 3) Testing: O forward, O reverse, but antibody screen wildly positive and all units incompatible
- 4) "Para-Bombay" phenotype
 - a) Like Bombays, are *hh*, but unlike Bombays, have at least one *Se* gene
 - b) Phenotypes: A_h, B_h, AB_h
 - c) RBCs may be Bombay-like, but may also show free or RBC A or B antigens (unless group O).
 - d) Allo-anti-H present in serum.
- 5) Both Bombay and Para-Bombay need H-negative blood (from Bombay donors)
- 8. Consequences of ABO incompatibility
 - a. Severe acute hemolytic transfusion reactions
 - 1) Among most common blood bank fatalities
 - 2) Clerical errors
 - b. Most frequent HDFN; usually mild, however

C. Lewis System

- 1. Biochemistry (see figure below)
 - a. Type 1 chains only
 - b. One gene: Le (FUT3)
 - 1) Second gene, le, is nonfunctional
 - c. FUT enzyme adds fucose to **subterminal GlcNAc** (left side of figure below).
 - 1) This makes Le^a (Lewis A) antigen.
 - 2) Le^a antigens **cannot** be modified to make Le^b.

- d. In secretors, Se product (FUT2) adds fucose, then Le product adds fucose; this makes Le^b (Lewis B).
 1) In secretors, Lo^b formation accurs preferentially.
 - 1) In secretors, Le^b formation occurs preferentially.

- 2) As a result, the vast majority of the chains of those who carry *Le* and *Se* are Le^b rather than Le^a.
- 3) In non-secretors, Le^a is only possible Lewis antigen.
- e. Unlike ABO, antigens are not tightly bound (remember, they are made from *type 1 chains*); rather, they **adsorb** onto the surface of RBCs.
 - Le^b does this better than Le^a; another reason that most adults with both *Le* and *Se* will be Le(a-b+).
 - 2) Le(a-b+) people still have Le^a, just in much smaller quantities that may not show up on RBCs.
- f. Same chain <u>can</u> carry Le and ABO antigens (unlike the inverse relationship with ABO and H).
- 2. Lewis phenotypes, antigens, and antibodies
 - a. Phenotypes: Le(a-b+), Le(a+b-), Le(a-b-)
 - b. 22% of blacks are Le(a-b-), vs. only 6% of whites.
 - c. Antibodies are naturally occurring, cold-reacting IgM.1) Primarily in Le(a-b-)
 - 2) Neutralize with saliva from secretors.
 - Antibodies commonly also show ABH specificity (e.g., anti-Le^{bH} reacts best with O or A₂ RBCs)
- 3. Consequences of incompatibility
 - a. Antibodies are generally insignificant
 - b. Rare HTRs (more commonly with anti-Le^a)
 - c. No HDFN (antibody doesn't cross placenta and Le antigens are not present on fetal RBCs).
- 4. Weird stuff about Lewis
 - a. Lewis antigens decrease during pregnancy.
 - 1) Pregnant patients may appear Le(a-b-) and have transient, insignificant Lewis antibodies.
 - 2) Increased plasma volume dilutes the antigens and increased plasma lipoproteins strip the antigens
 - b. Le(a-b+) people don't make anti-Le^a.
 - 1) Still have Le^a, just not visible on their RBCs.
 - c. Children's Lewis type may vary, as antigen chains are converted [more Le^a than Le^b initially, with a transient period of Le(a+b+)]; by age 2, are Le(a-b+)
 - d. Infection associations:
 - 1) *H. pylori* attaches to gastric mucosa via Le^b antigen.
 - 2) Norwalk virus also attaches via Le^b
 - 3) Le(a-b-) are at risk for Candida and E. coli infection

D. I System

- 1. Antigens built on type 2 chains.
- 2. Expression is age-dependent.
 - a. Simple chains found on neonates make i antigen.
 - b. Branched chains in adults make I antigen.
 - c. "Big I in big people, little i in little people"
 - d. Occasional adults lack I; they are known as "i_{adult}"; more common in Asians

- 3. Antibodies (usually <u>auto</u>antibodies)
 - a. Cold reacting IgM, with auto-anti-I seen commonly
 - b. Naturally occurring, common, usually insignificant
 - c. Like Lewis, antibodies commonly have H specificity as well (e.g., anti-IH reacts better against O and A₂)
- 4. Classic associations
 - a. Auto-anti-I
 - 1) Cold agglutinin disease
 - 2) Mycoplasma pneumoniae infection
 - b. Auto-anti-i
 - 1) Associated with infectious mononucleosis
 - 2) Less often a problem than auto-anti-I
 - c. I_{adult} phenotype
 - 1) Cataracts
 - 2) HEMPAS

E. P System (the cool one)

- 1. Also built on ABO-related chains
- 2. Antigens
 - a. P1 is the only antigen
 - 1) P, P^k not officially in P system anymore
 - 2) These three antigens define the overall P phenotype.
 - 3) Most common P phenotype: P_1 (P+P1+P^k-).
 - b. Very rare people lack all three and make anti-PP1P^k.
 - 1) Acute HTR and early spontaneous abortions
 - c. P antigen is **parvovirus B19** receptor.
 - d. P^k antigen is receptor for various bacteria and toxins
- 3. Antibodies (anti-P1)
 - a. Cold reacting, naturally occurring, insignificant IgM; rare anti-P1 reactive at AHG is potentially significant
 - b. Titers elevated in those with hydatid cyst disease (*Echinococcus*) and bird handlers
 - 1) Bird feces contains P1-like substance.
 - c. Neutralized by hydatid cyst fluid, pigeon egg whites
- 4. Association with paroxysmal cold hemoglobinuria
 - a. Biphasic IgG with anti-P (not P1) specificity
 - 1) Binds in cold temps, hemolyzes when warmed
 - 2) "Donath-Landsteiner biphasic hemolysin"
 - b. Historically in syphilis, now after viral infx in children

F. Rh System

- 1. Second most important blood group (after ABO)
- 2. Old (incorrect) Rh antigen terminology systems

a. Fisher-Race (DCE or CDE)

- 1) Five major antigens: D, C, E, c, e
 - a) "Rh positive" really means "D positive."
 - b) Absence of D designated "d" (no d antigen)
 - c) C/c and E/e are antithetical (e.g., can't have both C and c or E and e from same chromosome)
- 2) Eight potential combinations based on presence of genes for above antigens (ie, "DCe", "dce", etc.)

b. Wiener (Rh-Hr)

- 1) Different, archaic names for the five main antigens
- 2) Believed that main Rh genes (for presence or absence of D, for C or c and for E or e) inherited as one genetically linked group, or "haplotype."
- 3) Shorthand names to the haplotypes; nomenclature is still in use and is essential to know (though theory of how these are inherited has been disproven).

Wiener's "Haplotypes" (with DCE Equivalents)		
R ₁ : DCe	r':dCe	
R ₂ : DcE	r": dcE	
R ₀ : Dce	r : dce	
R _z : DCE	r ^y : dCE	

- a) Rules for converting Wiener's modified haplotypes into Fisher-Race terminology:
 - "R" = D, "r" = d
 - "1" or "prime" = C
 - "2" or "double prime" = E
 - "0" or "blank" = ce
 - Any sub- or superscript letter = CE
- 4) Only four of the above combinations occur with significant frequency: **R**₁, **R**₂, **R**₀ and **r**. (~97% of blacks and whites use only these four).
 - R₀ most common in blacks, least common in whites.
 - r is always second in frequency.
 - R₁ always comes before R₂.

 "The Big Four"

 Whites:
 R₁ > r > R₂ > R₀

 Blacks:
 R₀ > r > R₁ > R₂

- 5) Asians us. D+; their order is $R_1 > R_2 > r$ and R_0 .
- c. Current understanting of Rh genetics/structure
 - 1) Two genes, *RHD* and *RHCE* (chromosome 1) code for two main Rh proteins (RHD and RHCE)
 - 2) D type determined by presence/absence of RHD
 - 3) One protein gives both C/c and E/e antigens; combination determined by which alleles of *RHCE* are present (*CE*, *Ce*, *cE*, or *ce*)
- 3. Rh antibodies
 - a. Exposure-requiring, warm-reacting IgG
 - b. D induces the most antibodies, then c and E
 - Traditional: 80-85% of D negatives make anti-D when exposed to one unit of D pos RBCs
 Recent data: 20-30% in hospital settings
 - c HTRs with extravascular hemolysis

- d Severe and prototypical HDFN with anti-D, severe HDFN with anti-c, mild HDFN with anti-C, -E, -e
- 4. Weird stuff about Rh

a. D-negative phenotype

- 1) Unusual because caused by mutations and deletions rather than by synthetic actions of a gene product
- 2) Caucasians: D-negatives have <u>deletion</u> of *RHD* gene
- 3) African-Americans: Point <u>mutations</u> in *RHD* gene ("pseudogene")
- 4) Asians: Usually have *inactive RHD* gene
- b. D Variants
 - 1) Weak D (formerly "D"")
 - a) Usual D testing: Monoclonal IgM with polyclonal IgG read only at immediate spin
 - b) Almost all D+ test as D+ with these reagents
 - b) Some D+ individuals have decreased D expression and require IAT to detect D antigen.

The Weak D Test

c) Possible reasons for weak D

- Mutated form of RHD
 - Point mutation causing altered amino acids in membrane or inner part of RHD
 - Type 1 common in Caucasians
- *RHCe* on opposite chromosome to *RHD* ("C in trans") inhibits D expression
- d) Testing requirements
 - Weak D test for all D-negative blood donors
 - <u>Not</u> required for D-negative blood <u>recipients</u>
 - Previously a concern, for fear of wasting Dneg units on D+ patients
 - Monoclonal antibodies mentioned above make this very unlikely
 - The only <u>patients</u> who <u>definitely</u> need weak D testing are apparently D-negative babies with D-negative moms.
- e) Weak D moms do not need RhIG prophylaxis
- 2) **Partial D** ("D Category", "D mosaic")
 - a) At one time considered a form of weak D
 - b) Lack portions (epitopes) of D antigen.
 - c) *RHD* gene mutations leading to alteration of <u>exterior</u> part of RHD antigen
 - d) Antibodies form against absent parts of RHD; this antibody appears to be anti-D at first glance

- e) Classic: Anti-D in a D-positive person
- f) Most common: DVI (D "six") in whites
 - Monoclonal anti-D usually types these as Dnegative (prevents D exposure as recipients)
- g) Note that partial C and partial e antigens exist, and can result in unusual antibodies
- h) Partial D moms <u>do</u> need RhIG prophylaxis
- i) Partial D vs. weak D may be impossible without molecular testing; if in doubt for prenatal testing, consider patient D-negative
- 3) $\underline{\mathbf{D}}_{\underline{\mathbf{e}}\mathbf{l}}$ ("D-E-L")
 - a) Appear D-neg but have tiny amounts of D seen after elution of reagent anti-D from RBCs
 - b) Primarily seen in Asian populations (up to 1/3 of D-negative Asians)
- c. These antibodies go together...
 - 1) Anti-E formation commonly accompanied by anti-c (not necessarily vice-versa)
 - 2) Think "Big 4"; R_2R_2 gives both E and c exposure
- d. Compound Rh antigens
 - 1) G = Antigen present when <u>either</u> C or D is present
 - Anti-G reacts against (D+C-), (D-C+), or (D+C+) RBCs (rarely against D-C-G+)
 - Common presentation: D-negative person forms anti-D when not obviously exposed to D
 - Important because if D-neg mom has anti-G, she DOES still need RhIG to prevent anti-D
 - Can cause HTRs (give D-C- blood)
 - See bbguy.blogspot.com/2011/08/g-whiz.html
 - 2) \mathbf{f} = Present when *RHce* is inherited (r and R_0).
 - Anti-f is often seen with anti-e or anti-c
 - Can cause mild HDFN and HTR

G. Kidd System

- 1. Kidd antigens
 - a. Jk^a, Jk^b, Jk3 (very high frequency)
 - b. Jk^a slightly more common than Jk^b in African Americans but similar in whites and Asians
 - c. Antigens reside on a urea transport protein
- 2. Kidd antibodies
 - a. Exposure requiring, warm-reacting IgG (often with IgM component as well)
 - 1) Can fix complement (with IgM component)
 - 2) Severe acute HTRs possible
 - b. Marked dosage effect
 - 1) Antibodies may not react at all against cells with heterozygous Kidd antigens
 - c. Variable antibody expression
 - 1) Antibody often disappears with time/storage.

- 3. Weird stuff about Kidd
 - a. Delayed HTRs (most famous association)
 - 1) Anamnestic response
 - 2) Intravascular and often severe
 - b. Mild HDFN at worst
 - 1) Child can only be one antigen different from mom; remember dosage discussion above.

H. MNS System

- 1. Basic biochemistry
 - a. Glycophorin A (GPA) carries M or N antigens.
 - b. Glycophorin B (GPB) carries S or s, and U antigens.
- 2. MNS antigens
 - a. M frequency roughly equals N (each \sim 75%)
 - b. s (~90%) is more frequent than S (~50%W, ~30%B)
 - c. If S-s- (as seen in 2% of African-Americans), may also be U-negative (U is extremely high frequency).
 - d. Vicea graminea lectin reacts against N antigens
 - e. Mur: Hybrid antigen seen in nearly 10% of Chinese
 - 1) Significant antibodies can form; more frequent in some areas than anything but anti-A or -B
- 3. MNS antibodies
 - a. M and N antibodies are mostly opposite of S, s and U antibodies (see below)

Anti-M & anti-N	Anti-S, -s and -U	
Naturally occurring	Require exposure	
Cold IgM	Warm IgG	
Dosage	Minimal dosage	
Insignificant	Significant	

- b. Anti-M and anti-N can usually be ignored unless reactive at 37C; not so with anti-S and anti-s
 - 1) Though anti-M is usually insignificant, it has been rarely associated with severe HDFN.
- c. Effect varies by enzyme, but enzymes generally decrease all MNS antigens except U
- 4. Weird stuff about MNS
 - a. N-like antigen ('N')
 - 1) GPB always has terminal 5 amino acid sequence that matches GPA's terminal sequence when it is expressing N; this is known as 'N'.
 - a) Not really <u>true</u> N antigen, but it's close enough to prevent most M+N- from making anti-N.
 - 2) Seen in all except those who lack glycophorin B.
 - a) <1% of blacks lack S, s, and U; rare in whites
 - b) Anti-N nearly exclusive to African-Americans
 - b. Auto-anti-N induced by hemodialysis
 - 1) Formaldehyde sterilization of machine

2) Modification of N leads to rare autoantibody

I. Duffy System

- 1. Duffy antigens and genes
 - a. Fy^a from Fy^a gene; high frequency in Asians
 - b. Fy^b from Fy^b gene; high frequency in caucasians
 - c. Absence of both antigens, Fy (a-b-), is most common
 Fy phenotype in African-Americans (68%, even
 higher in Africa).
 - 1) Due to inheritance of two copies of *Fy* gene, which gives no functioning Duffy glycoprotein
 - 2) Fy is an Fy^b gene variant, and gives Fy^b antigen in non-RBC tissues
- 2. Duffy antibodies
 - a. Anti-Fy^a more common and significant than anti-Fy^b
 - b. Exposure requiring, warm-reactive IgG
 - c. Marked dosage and variable expression like Kidd Abs
- 3. Consequences of incompatibility
 - a. Severe HTRs, usually delayed and extravascular
 - b. Often mild, occasionally severe HDFN
- 4. Weird stuff about Duffy
 - a. Fy(a-b-) and malarial resistance
 - 1) Fy(a-b-) humans are resistant to *Plasmodium vivax* and *P. knowlesi* infection.

J. Kell System

- 1. Extremely important group clinically and serologically
- 2. Kell antigens
 - a. Low frequency: K, also known as "KEL1" (9% whites, 2% blacks), Js^a, Kp^a
 - b. High frequency: k or "KEL2" (99.8%), Js^b, Kp^b
 - c. Kx antigen: Bound to Kell glycoprotein on the red cell membrane; required for proper Kell antigen expression
 - 1) Actually a separate blood group (Kx system)
 - When Kell antigens decrease, Kx increases (as in K₀, aka "Kell null")
 - 3) When Kx decreases (as in "McLeod syndrome", see later), Kell antigens decrease, too.
 - d. Kell system antigens destroyed by thiol reagents (2-ME, DTT, ZZAP) but not by enzymes alone.
- 3. Kell antibodies
 - a. Anti-K
 - 1) Most common non-ABO antibody after anti-D
 - 2) Exposure-requiring, warm reacting IgG1
 - 3) More common from <u>transfusion</u> than pregnancy
 - b. Anti-k
 - 1) Very uncommon due to high antigen frequency
 - 2) Antibody is just like anti-K
- 4. Consequences of incompatibility
 - a. Severe HTRs
 - 1) May be acute or delayed; usually extravascular.

- b. Severe HDFN
 - 1) Less common than ABO or RHD HDFN
 - 2) Damages EARLY RBC <u>precursors</u>, so tends to be *suppressive* rather than hemolytic
 - a) Lower bilirubin and reticulocytopenia than with anti-D HDFN
- 5. Weird stuff about Kell
 - a. Kell null phenotype ("K₀")
 - 1) All Kell antigens decreased, Kx increased
 - 2) Significant anti-Ku ("universal") with exposure
 - b. McLeod phenotype
 - 1) Kx absent, all Kell antigens markedly decreased
 - No anti-Ku like K₀, but can form anti-Kx and anti-Km (Kell "McLeod"); only compatible with McLeod RBCs
 - 3) Phenotype is part of McLeod "syndrome"
 - a) Hemolytic anemia with acanthocytes
 - b) Myopathy, ataxia, peripheral neuropathy, cognitive impairment, cardiomyopathy
 - c) Occasional association with X-linked chronic granulomatous disease
 - NADPH oxidase deficit
 - Organisms phagocytized but not killed
 - Catalase-positive organisms (*Staph*)

K. Diego System

- 1. Over 20 antigen system built on "band 3"
 - a. Important RBC membrane structure
 - b. Carries HCO₃⁻ anions out of RBCs (for CO₂ removal), and anchors membrane to cytoskeleton
- 2. Diego antigens
 - a. Di^a and Di^b antithetical pair
 - 1) Di^a very <u>low</u> frequency except in some South Americans and Asians
 - 2) Di^b very <u>high</u> frequency in all populations
 - b. Wr^a and Wr^b antithetical pair
 - 1) Wr = "Wright"
 - 2) Wr^{a} very <u>low</u> frequency, Wr^{b} very <u>high</u> frequency
- 3. Diego antibodies
 - a. Di antibodies are IgG, while Wr antibodies may have IgM component
 - b. Both anti-Di^a and –Di^b can cause HDFN that may be severe but generally not HTRs
 - c. Anti-Di^b can show marked dosage effect
 - d. Anti-Wr^a is common, naturally occurring, and may cause both HTRs and severe HDFN (IgG + IgM)
 - e. Anti-Wr^b, on the other hand, is rarely seen as an alloantibody but may be an autoantibody in autoimmune hemolytic anemia (AIHA)

L. A few other systems and antigens (in brief)

1. Dombrock System

- a. Do^a/Do^b antigens; Do^b more frequent
 - 1) Either antibody may cause HTRs but generally don't cause HDFN
 - 2) Warm-reactive IgG
- b. High frequency antigens Jo^a, Gy^a, Hy
 - 1) Mild HTRs or HDFN possible, but antibodies are very rare
 - 2) Near 100% incidence for all of these
 - 3) Jo^a- and Hy negative exclusively in blacks
 - 4) Gy^a negative in Japanese and eastern Europeans
- 2. Colton (Co) System
 - a. Antigens (Co^a and Co^b) located on water transport membrane protein (aquaporin 1)
 - b. Co^a very high frequency (near 100%), Co^b about 10%
 - c. Both antibodies may cause significant HDFN
- 3. Lutheran (Lu) System
 - a. Lu^a (low frequency; 5-8%) and Lu^b (very high frequency; 99.8%) antigens
 - b. Antibodies uncommon, may be naturally occurring (anti-Lu^a), and not usually significant
 - c. Most enzymes decrease Lu antigen activity.
- 4. Xg System
 - a. Gene carried on X chromosome ("X-linked")1) Seen in 66% of males and 90% of females
 - b. Antibody insignificant
- 5. Yt System
 - a. Formerly "Cartwright"
 - b. Yt^a (very high frequency; 99.8%), Yt^b (8%)
 - c. Antibodies are IgG but not usually significant (occasional anti-Yt^a can cause HTRs, however)
- 6. Vel Antigen
 - a. Extremely high frequency antigen (>99% in all populations)
 - b. Antibody is mix of IgG and IgM
 - 1) May cause severe HTRs and HDFN
 - 2) May interfere with ABO typing due to reaction at room temperatures
 - 3) May be allo- or autoantibody
- 7. Landsteiner-Wiener (LW) System
 - a. LW^a antigen is more abundant on D-positive RBCs
 - b. LW antigens were originally thought to be Rh antigens
 - c. Antibodies are not generally significant
- 8. Sd^a ("Sid") antigen
 - a. High frequency (96%)
 - b. Refractile, small immune complexes with naturally occurring IgM

- c. Lectin of *Dolichos biflorus* agglutinates Sd^a positive RBCs (like A¹)
- d. Neutralize with guinea pig or human Sd^{a+} urine!
- 9. Antibodies with "high titer, low avidity" (HTLA) features
 - a. High frequency antigens that are generally clinically benign (no HTRs or HDN)
 - b. Chido, Rodgers most frequent 1) Complement components (C4)
 - c. Multiple others known 1) Knops (Kn^a), McCoy (McC^a), JMH
 - d. Must be careful, because some antibodies with similar features may be significant (anti-Vel, anti-Yt^a)