Antibody Identification
Part 1: The Basics
A Blood Bank Guy Video Podcast

D. Joe Chaffin, MD
March 2012

• Prerequisites
• Geography of a panel
• Antibody ID method
• Case examples

Prerequisites
• Blood Group Overview
• General facts
• Podcast from December 2011
• Pretransfusion Testing
• Testing methodologies
• Antibody screen
• Podcast from February 2012

When Do We I.D.?
• Following a positive antibody screen
• Patients, prenatsals, donors
• When testing suggests a new antibody
• To confirm a previously identified antibody (per facility SOP)
Definitions

- Alloantibody
 - Antibody against RBC antigens not present on patient’s own RBCs
- Autoantibody
 - Antibody against RBC antigens present on patient’s own RBCs

What’s a Panel?

- Just an expanded antibody screen
- Uses group O reagent RBCs
- RBCs from 8-20 donors
- Patient serum or plasma
- IS / 37°C / AHG if tubes
- AHG only if gel or solid phase
- Reactions documented on a sheet that outlines every RBC’s phenotype

Geography

- Let’s take a close look at a panel
- Important to know your way around
- There are variations, but this is a general guide
A series of 8-20 group O donor reagent red cells, each tested for all main antigens (“phenotyped”)

Rh-hr (or “Hr”) = Modified Wiener Rh genotype for donor

<table>
<thead>
<tr>
<th>Cell</th>
<th>Rh-hr</th>
<th>D</th>
<th>C</th>
<th>e</th>
<th>f</th>
<th>Cw</th>
<th>K</th>
<th>k</th>
<th>Kp</th>
<th>Kp'</th>
<th>jk</th>
<th>jk'</th>
<th>Fy</th>
<th>Fy'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R/R'1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>R/R'1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>R/R'1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>R/R'1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>r'/r</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>r'/r</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>r'/r</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>r'/r</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Other stuff:
- Donor ID
- Special Antigen Type

Pt. phenotype results

| PC | + | 0 | + |

Full donor phenotype

D phenotype for each donor, C phenotype for each donor, etc...

<table>
<thead>
<tr>
<th>Cell</th>
<th>Rh-hr</th>
<th>Xg</th>
<th>Kell</th>
<th>Duffy</th>
<th>Kidd</th>
<th>P</th>
<th>Lutheran</th>
<th>MNSs</th>
<th>Lewis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R/R'1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>R/R'1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>R/R'1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>R/R'1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>r'/r</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>r'/r</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>r'/r</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>r'/r</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Jk(a+b–): Assume “double dose” Jk^a
Jk(a+b+): “Single dose” Jk^a and Jk^b
Jk(a–b+): Assume “double dose” Jk^b
IS = Immediate spin
37 = 37°C Incubation
AHG = Anti-human globulin
IAT = Indirect antiglobulin test
(=AHG)

This is tube testing!
- LISS ✅
- Albumin ✅
- Saline ✅
- PEG ✅

This could be:
- Tube testing
- Gel testing
- Solid-phase testing
IS = Immediate spin
37 = 37°C Incubation
AHG = Anti-human globulin
IAT = Indirect antiglobulin test (=AHG)

This could be:
- Tube testing
 OR
- Gel testing
 OR
- Solid-phase testing

All other results are suspect
If the AC is positive:

Ya Gotta Have a Plan...
- Consistent approach minimizes error
- Most are simple, but cutting corners increases risk for dumb mistakes
- Use this or your own system, but use the same approach every time!

www.bbguy.org
General Process

- Check history
- Check autocontrol
- Look at general pattern
- Look at what’s NOT there (cross-outs)
- Look at what IS there
- Use special techniques as necessary
- Ensure statistical significance

History

- Both in real life and on exams
- History can give you a clue and keep you from doing something dumb
- Up to 70% of cases impacted by history

History

- Clinical history examples:
 - Anti-D in pregnant pt; consider RhIG
 - Recent bacterial infection; consider antibiotic induced warm autoab
 - Recent viral illness; consider auto-anti-I or -i (consider age)
 - Recent transfusion; consider newly developing antibody
 - ITP; consider IV RhIG in D+ patient

History

- Clinical history examples:
 - Consider racial profiling (in a good way, of course!)
 - African-Americans: Lack of Duffy antigens
 - Asians: Almost all D+
 - Whites: May lack high freq antigens
History

- Consider serologic history, if known
- Previous phenotyping will help, but be careful!
- Transplants, transfusions, errors
- In real world, can use this info for targeting the panel and cells chosen

General Process

- Check history
- Check autocontrol
- Look at general pattern
- Look at what’s NOT there (cross-outs)
- Look at what IS there
- Use special techniques as necessary
- Ensure statistical significance

Positive Autocontrol

- More details next time...
- Question 1: Is DAT positive?
- Question 2: What’s the patient history?
- Possibilities include:
 - Autoantibodies (warm and cold)
 - Recent transfusion/DHTR
 - Drug-induced issues
 - Passively acquired antibodies
General Process

- Check history
- Check autocontrol
- Look at general pattern
- Look at what’s NOT there (cross-outs)
- Look at what IS there
- Use special techniques as necessary
- Ensure statistical significance

Pattern

- Are reactions:
 - Uniform or variable?
 - Against all, most, or rare cells?
 - Present in what phases?

Variability

- Uniform reactions suggest a single antibody
- Variable reactions suggest either:
 - Multiple antibodies OR
 - Single antibody with dosage

Cells Reactive

- With negative autocontrol...
 - A mixture of reactive and nonreactive cells suggests:
 - A single alloantibody OR
 - Multiple alloantibodies
 - A single reactive cell suggests:
 - A single alloantibody against a low-prevalence antigen
Cells Reactive

- With negative autocontrol...
- All or virtually all cells reactive suggests:
 - Multiple alloantibodies
 - A single alloantibody against a high-prevalence antigen

www.bbguy.org
General Process

- Check history
- Check autocontrol
- Look at general pattern
- Look at what’s NOT there (cross-outs)
- Look at what IS there
- Use special techniques as necessary
- Ensure statistical significance

Cross-outs

<table>
<thead>
<tr>
<th>Fyα</th>
<th>Fyβ</th>
<th>IS</th>
<th>37C</th>
<th>IAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Gel or solid-phase most likely (probably gel)
2. No autoantibody obvious
3. Uniform pattern; single antibody most likely
“Cross-outs”

<table>
<thead>
<tr>
<th>Rh-hr</th>
<th>Duffy</th>
<th>Kidd</th>
<th>P</th>
<th>Kp</th>
<th>Lu</th>
<th>MNSs</th>
<th>Lewis</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

www.bbguay.org
General Process

- Check history
- Check autocontrol
- Look at general pattern
- Look at what’s NOT there (cross-outs)
- Look at what IS there
- Use special techniques as necessary
- Ensure statistical significance

1. Gel or solid-phase most likely (probably gel)
2. No autoantibody obvious
3. Uniform pattern; single antibody most likely

Try first for a single antibody to explain all reactions
General Process

- Try first for a single antibody to explain all reactions
- Failing that...
- Depending on pattern, hypothesize:
 - Two antibodies in same phase
1. Tube testing for sure
2. No autoantibody obvious
3. Highly variable pattern, both warm and cold
General Process

- Check history
- Check autocontrol
- Look at general pattern
- Look at what’s NOT there (cross-outs)
- Look at what IS there
- Use special techniques as necessary
- Ensure statistical significance

Phenotyping

- Helps confirm identification of alloantibody by demonstrating lack of antigen
- Is a TOOL in confirmation, not sole measure of confirmation

Adsorption

- Removing antibodies from sample by incubation with antigen-positive RBCs
Adsorption

- Removing antibodies from sample by incubation with antigen-positive RBCs

“Alloadsorption”

Antik- K+C+S–
Anti- C K+C+S–
Anti- S K+C+S–

“Adsorbed Serum”

Elution

- Removal of RBC-bound antibodies
- Heat, cold, chemical (glycine)

“Elution”

Anti-K
Anti-C

Proteolytic Enzymes

- Enzymes such as ficin and papain may change Ag expression/Ab binding

General Process

- Check history
- Check autocontrol
- Look at general pattern
- Look at what’s NOT there (cross-outs)
- Look at what IS there
- Use special techniques as necessary
- Ensure statistical significance
Probability

- Basic idea: Ensure what you are seeing is not pure chance
- Traditional interpretation:
 - Ag present: 3 positive reactions
 - Ag absent: 3 negative reactions
- AABB Standards for IRLs, 7th ed:
 - 5.3.3 requires only 2 of each reaction to assign specificity

Let’s do some together!

1. Gel or solid-phase most likely (probably gel)
2. No autoantibody obvious
3. Uniform pattern; single antibody most likely

www.bbguy.org
Thanks!

- Monica LaSarre (Bonfils)
- Tuan Le (Bonfils)
- Colleen Chiappa (Bonfils)
- Kevin Elman (N. Co. Med Center)
- Cami Melland (Bonfils)
- The immortal Connie Howard (Walter Reed)

This podcast is not a medical consultation. Please consult your provider before making any medical decisions, and do not use the information presented here for anything other than educational purposes.

Please do not reproduce or rebroadcast this podcast without my permission!

Seriously! You’re getting it for free, right?